Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Science ; 372(6538)2021 04 09.
Article in English | MEDLINE | ID: covidwho-1476375

ABSTRACT

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in September 2020 and is rapidly spreading toward fixation. Using a variety of statistical and dynamic modeling approaches, we estimate that this variant has a 43 to 90% (range of 95% credible intervals, 38 to 130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine rollout, COVID-19 hospitalizations and deaths across England in the first 6 months of 2021 were projected to exceed those in 2020. VOC 202012/01 has spread globally and exhibits a similar transmission increase (59 to 74%) in Denmark, Switzerland, and the United States.


Subject(s)
COVID-19/transmission , COVID-19/virology , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Basic Reproduction Number , COVID-19/epidemiology , COVID-19/mortality , COVID-19 Vaccines , Child , Child, Preschool , Communicable Disease Control , England/epidemiology , Europe/epidemiology , Female , Humans , Infant , Male , Middle Aged , Models, Theoretical , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/growth & development , SARS-CoV-2/pathogenicity , Severity of Illness Index , Socioeconomic Factors , United States/epidemiology , Viral Load , Young Adult
2.
Science ; 371(6538):149-149, 2021.
Article in English | Academic Search Complete | ID: covidwho-1181922

ABSTRACT

The article discusses about the novel variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused COVID-19. One of these variant of concern was B.1.1.7 which was first detected in southeast England and spread to become the dominant lineage in the United Kingdom in just a few months.

3.
mSystems ; 5(4)2020 Jul 21.
Article in English | MEDLINE | ID: covidwho-661121

ABSTRACT

Wastewater surveillance represents a complementary approach to clinical surveillance to measure the presence and prevalence of emerging infectious diseases like the novel coronavirus SARS-CoV-2. This innovative data source can improve the precision of epidemiological modeling to understand the penetrance of SARS-CoV-2 in specific vulnerable communities. Here, we tested wastewater collected at a major urban treatment facility in Massachusetts and detected SARS-CoV-2 RNA from the N gene at significant titers (57 to 303 copies per ml of sewage) in the period from 18 to 25 March 2020 using RT-qPCR. We validated detection of SARS-CoV-2 by Sanger sequencing the PCR product from the S gene. Viral titers observed were significantly higher than expected based on clinically confirmed cases in Massachusetts as of 25 March. Our approach is scalable and may be useful in modeling the SARS-CoV-2 pandemic and future outbreaks.IMPORTANCE Wastewater-based surveillance is a promising approach for proactive outbreak monitoring. SARS-CoV-2 is shed in stool early in the clinical course and infects a large asymptomatic population, making it an ideal target for wastewater-based monitoring. In this study, we develop a laboratory protocol to quantify viral titers in raw sewage via qPCR analysis and validate results with sequencing analysis. Our results suggest that the number of positive cases estimated from wastewater viral titers is orders of magnitude greater than the number of confirmed clinical cases and therefore may significantly impact efforts to understand the case fatality rate and progression of disease. These data may help inform decisions surrounding the advancement or scale-back of social distancing and quarantine efforts based on dynamic wastewater catchment-level estimations of prevalence.

4.
Sci Transl Med ; 12(554)2020 07 29.
Article in English | MEDLINE | ID: covidwho-610874

ABSTRACT

Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections to date has relied heavily on reverse transcription polymerase chain reaction testing. However, limited test availability, high false-negative rates, and the existence of asymptomatic or subclinical infections have resulted in an undercounting of the true prevalence of SARS-CoV-2. Here, we show how influenza-like illness (ILI) outpatient surveillance data can be used to estimate the prevalence of SARS-CoV-2. We found a surge of non-influenza ILI above the seasonal average in March 2020 and showed that this surge correlated with coronavirus disease 2019 (COVID-19) case counts across states. If one-third of patients infected with SARS-CoV-2 in the United States sought care, this ILI surge would have corresponded to more than 8.7 million new SARS-CoV-2 infections across the United States during the 3-week period from 8 to 28 March 2020. Combining excess ILI counts with the date of onset of community transmission in the United States, we also show that the early epidemic in the United States was unlikely to have been doubling slower than every 4 days. Together, these results suggest a conceptual model for the COVID-19 epidemic in the United States characterized by rapid spread across the United States with more than 80% infected individuals remaining undetected. We emphasize the importance of testing these findings with seroprevalence data and discuss the broader potential to use syndromic surveillance for early detection and understanding of emerging infectious diseases.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/epidemiology , Influenza, Human/epidemiology , Pneumonia, Viral/epidemiology , Population Surveillance , COVID-19 , Coronavirus Infections/mortality , Humans , Pandemics , Patient Acceptance of Health Care , Pneumonia, Viral/mortality , Prevalence , SARS-CoV-2 , Syndrome , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL